5 research outputs found

    CRISPR-Cas13a system: A novel tool for molecular diagnostics

    Get PDF
    The clustered regularly interspaced short palindromic repeats (CRISPR) system is a natural adaptive immune system of prokaryotes. The CRISPR-Cas system is currently divided into two classes and six types: types I, III, and IV in class 1 systems and types II, V, and VI in class 2 systems. Among the CRISPR-Cas type VI systems, the CRISPR/Cas13a system has been the most widely characterized for its application in molecular diagnostics, gene therapy, gene editing, and RNA imaging. Moreover, because of the trans-cleavage activity of Cas13a and the high specificity of its CRISPR RNA, the CRISPR/Cas13a system has enormous potential in the field of molecular diagnostics. Herein, we summarize the applications of the CRISPR/Cas13a system in the detection of pathogens, including viruses, bacteria, parasites, chlamydia, and fungus; biomarkers, such as microRNAs, lncRNAs, and circRNAs; and some non-nucleic acid targets, including proteins, ions, and methyl groups. Meanwhile, we highlight the working principles of some novel Cas13a-based detection methods, including the Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) and its improved versions, Cas13a-based nucleic acid amplification-free biosensors, and Cas13a-based biosensors for non-nucleic acid target detection. Finally, we focus on some issues that need to be solved and the development prospects of the CRISPR/Cas13a system

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Effective Infection with Dengue Virus in Experimental Neonate and Adult Mice through the Intranasal Route

    No full text
    Dengue virus, the causative agent of dengue fever, life-threatening hemorrhagic fever, and shock syndrome, is mainly transmitted to humans through mosquito vectors. It can also be transmitted through atypical routes, including needle stick injury, vertical transmission, blood transfusion, and organ transplantation. In addition, sporadic cases which have no clear infectious causes have raised the respiratory exposure concerns, and the risks remain unclear. Here, we analyze the respiratory infectivity of the dengue virus in BALB/c suckling and adult immunodeficient mice by the intranasal inoculation of dengue virus serotype 2. The infected mice presented with clinical symptoms, including excitement, emaciation, malaise, and death. Viremia was detected for 3 days post inoculation. Histopathological changes were observed in the brain, liver, and spleen. The virus showed evident brain tropism post inoculation and viral loads peaked at 7 days post inoculation. Furthermore, the virus was isolated from the infected mice; the sequence homology between the origin and isolates was 99.99%. Similar results were observed in adult IFN-α/β receptor-deficient mice. Overall, dengue virus can infect suckling mice and adult immune-deficient mice via the nasal route. This study broadens our perception of atypical dengue transmission routes and provides evidence of nasal transmission of dengue virus in the absence of mosquito vectors

    Study of tissue engineered vascularised oral mucosa-like structures based on ACVM-0.25% HLC-I scaffold in vitro and in vivo

    No full text
    AbstractPurpose To explore the feasibility of constructing tissue-engineered vascularised oral mucosa-like structures with rabbit ACVM-0.25% HLC-I scaffold and human gingival fibroblasts (HGFs), human gingival epithelial cells (HGECs) and vascular endothelial-like cells (VEC-like cells).Method Haematoxylin and Eosin (H&E) staining, immunohistochemical, immunofluorescence, 5-ethynyl-2′-deoxyuridine (EdU) staining and scanning electron microscope (SEM) were performed to detect the growth status of cells on the scaffold complex. After the scaffold complex implanted into nude mice for 28 days, tissues were harvested to observe the cell viability and morphology by the same method as above. Additionally, biomechanical experiments were used to assess the stability of composite scaffold.Results Immunofluorescence and Immunohistochemistry showed positive expression of Vimentin, S100A4 and CK, and the induced VEC-like cells had the ability to form tubule-like structures. In vitro observation results showed that HGFs, HGECs and VEC-like had good compatibility with ACVM-0.25% HLC-I and could be layered and grow in the scaffold. After implanted, the mice had no immune rejection and no obvious scar repair on the body surface. The biomfechanical test results showed that the composite scaffold has strong stability.Conclusion The tissue-engineered vascularised complexes constructed by HGFs, HGECs, VEC-like cells and ACVM-0.25% HLC-I has good biocompatibility and considerable strength

    Effective Infection with Dengue Virus in Experimental Neonate and Adult Mice through the Intranasal Route

    No full text
    Dengue virus, the causative agent of dengue fever, life-threatening hemorrhagic fever, and shock syndrome, is mainly transmitted to humans through mosquito vectors. It can also be transmitted through atypical routes, including needle stick injury, vertical transmission, blood transfusion, and organ transplantation. In addition, sporadic cases which have no clear infectious causes have raised the respiratory exposure concerns, and the risks remain unclear. Here, we analyze the respiratory infectivity of the dengue virus in BALB/c suckling and adult immunodeficient mice by the intranasal inoculation of dengue virus serotype 2. The infected mice presented with clinical symptoms, including excitement, emaciation, malaise, and death. Viremia was detected for 3 days post inoculation. Histopathological changes were observed in the brain, liver, and spleen. The virus showed evident brain tropism post inoculation and viral loads peaked at 7 days post inoculation. Furthermore, the virus was isolated from the infected mice; the sequence homology between the origin and isolates was 99.99%. Similar results were observed in adult IFN-α/β receptor-deficient mice. Overall, dengue virus can infect suckling mice and adult immune-deficient mice via the nasal route. This study broadens our perception of atypical dengue transmission routes and provides evidence of nasal transmission of dengue virus in the absence of mosquito vectors
    corecore